direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×C23⋊C4, C23⋊C12, (C2×C4)⋊C12, (C2×C12)⋊2C4, C22⋊C4⋊1C6, (C22×C6)⋊1C4, (C6×D4).7C2, (C2×D4).1C6, (C2×C6).21D4, C23.1(C2×C6), C22.2(C3×D4), C22.2(C2×C12), C6.21(C22⋊C4), (C22×C6).1C22, (C3×C22⋊C4)⋊2C2, (C2×C6).19(C2×C4), C2.3(C3×C22⋊C4), SmallGroup(96,49)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C23⋊C4
G = < a,b,c,d,e | a3=b2=c2=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >
(1 7 19)(2 8 20)(3 5 17)(4 6 18)(9 16 21)(10 13 22)(11 14 23)(12 15 24)
(2 12)(3 9)(5 16)(8 15)(17 21)(20 24)
(2 12)(4 10)(6 13)(8 15)(18 22)(20 24)
(1 11)(2 12)(3 9)(4 10)(5 16)(6 13)(7 14)(8 15)(17 21)(18 22)(19 23)(20 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,7,19)(2,8,20)(3,5,17)(4,6,18)(9,16,21)(10,13,22)(11,14,23)(12,15,24), (2,12)(3,9)(5,16)(8,15)(17,21)(20,24), (2,12)(4,10)(6,13)(8,15)(18,22)(20,24), (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,7,19)(2,8,20)(3,5,17)(4,6,18)(9,16,21)(10,13,22)(11,14,23)(12,15,24), (2,12)(3,9)(5,16)(8,15)(17,21)(20,24), (2,12)(4,10)(6,13)(8,15)(18,22)(20,24), (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,7,19),(2,8,20),(3,5,17),(4,6,18),(9,16,21),(10,13,22),(11,14,23),(12,15,24)], [(2,12),(3,9),(5,16),(8,15),(17,21),(20,24)], [(2,12),(4,10),(6,13),(8,15),(18,22),(20,24)], [(1,11),(2,12),(3,9),(4,10),(5,16),(6,13),(7,14),(8,15),(17,21),(18,22),(19,23),(20,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,91);
(1 8 3)(2 7 4)(5 11 9)(6 12 10)(13 19 22)(14 20 23)(15 17 24)(16 18 21)
(1 17)(2 18)(3 15)(4 16)(5 20)(6 19)(7 21)(8 24)(9 14)(10 13)(11 23)(12 22)
(1 6)(3 10)(8 12)(13 15)(17 19)(22 24)
(1 6)(2 5)(3 10)(4 9)(7 11)(8 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,8,3)(2,7,4)(5,11,9)(6,12,10)(13,19,22)(14,20,23)(15,17,24)(16,18,21), (1,17)(2,18)(3,15)(4,16)(5,20)(6,19)(7,21)(8,24)(9,14)(10,13)(11,23)(12,22), (1,6)(3,10)(8,12)(13,15)(17,19)(22,24), (1,6)(2,5)(3,10)(4,9)(7,11)(8,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,8,3)(2,7,4)(5,11,9)(6,12,10)(13,19,22)(14,20,23)(15,17,24)(16,18,21), (1,17)(2,18)(3,15)(4,16)(5,20)(6,19)(7,21)(8,24)(9,14)(10,13)(11,23)(12,22), (1,6)(3,10)(8,12)(13,15)(17,19)(22,24), (1,6)(2,5)(3,10)(4,9)(7,11)(8,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,8,3),(2,7,4),(5,11,9),(6,12,10),(13,19,22),(14,20,23),(15,17,24),(16,18,21)], [(1,17),(2,18),(3,15),(4,16),(5,20),(6,19),(7,21),(8,24),(9,14),(10,13),(11,23),(12,22)], [(1,6),(3,10),(8,12),(13,15),(17,19),(22,24)], [(1,6),(2,5),(3,10),(4,9),(7,11),(8,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,93);
(1 14 21)(2 15 22)(3 16 23)(4 13 24)(5 19 9)(6 20 10)(7 17 11)(8 18 12)
(1 2)(3 7)(4 6)(5 8)(9 12)(10 24)(11 23)(13 20)(14 15)(16 17)(18 19)(21 22)
(1 3)(2 7)(4 5)(6 8)(9 24)(10 12)(11 22)(13 19)(14 16)(15 17)(18 20)(21 23)
(1 8)(2 5)(3 6)(4 7)(9 22)(10 23)(11 24)(12 21)(13 17)(14 18)(15 19)(16 20)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,14,21)(2,15,22)(3,16,23)(4,13,24)(5,19,9)(6,20,10)(7,17,11)(8,18,12), (1,2)(3,7)(4,6)(5,8)(9,12)(10,24)(11,23)(13,20)(14,15)(16,17)(18,19)(21,22), (1,3)(2,7)(4,5)(6,8)(9,24)(10,12)(11,22)(13,19)(14,16)(15,17)(18,20)(21,23), (1,8)(2,5)(3,6)(4,7)(9,22)(10,23)(11,24)(12,21)(13,17)(14,18)(15,19)(16,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,14,21)(2,15,22)(3,16,23)(4,13,24)(5,19,9)(6,20,10)(7,17,11)(8,18,12), (1,2)(3,7)(4,6)(5,8)(9,12)(10,24)(11,23)(13,20)(14,15)(16,17)(18,19)(21,22), (1,3)(2,7)(4,5)(6,8)(9,24)(10,12)(11,22)(13,19)(14,16)(15,17)(18,20)(21,23), (1,8)(2,5)(3,6)(4,7)(9,22)(10,23)(11,24)(12,21)(13,17)(14,18)(15,19)(16,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,14,21),(2,15,22),(3,16,23),(4,13,24),(5,19,9),(6,20,10),(7,17,11),(8,18,12)], [(1,2),(3,7),(4,6),(5,8),(9,12),(10,24),(11,23),(13,20),(14,15),(16,17),(18,19),(21,22)], [(1,3),(2,7),(4,5),(6,8),(9,24),(10,12),(11,22),(13,19),(14,16),(15,17),(18,20),(21,23)], [(1,8),(2,5),(3,6),(4,7),(9,22),(10,23),(11,24),(12,21),(13,17),(14,18),(15,19),(16,20)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,115);
C3×C23⋊C4 is a maximal subgroup of
C3⋊C2≀C4 (C2×D4).D6 C23.D12 C23.2D12 C23⋊C4⋊5S3 C23⋊D12 C23.5D12
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | ··· | 4E | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 12A | ··· | 12J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | ··· | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 4 | ··· | 4 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | ··· | 4 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C12 | C12 | D4 | C3×D4 | C23⋊C4 | C3×C23⋊C4 |
kernel | C3×C23⋊C4 | C3×C22⋊C4 | C6×D4 | C23⋊C4 | C2×C12 | C22×C6 | C22⋊C4 | C2×D4 | C2×C4 | C23 | C2×C6 | C22 | C3 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 4 | 1 | 2 |
Matrix representation of C3×C23⋊C4 ►in GL4(𝔽7) generated by
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
4 | 2 | 0 | 6 |
1 | 3 | 3 | 2 |
5 | 6 | 0 | 3 |
3 | 0 | 6 | 0 |
1 | 1 | 2 | 2 |
2 | 0 | 2 | 2 |
5 | 2 | 1 | 0 |
1 | 1 | 4 | 5 |
6 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 6 |
6 | 5 | 5 | 5 |
0 | 4 | 4 | 5 |
6 | 3 | 5 | 4 |
3 | 3 | 2 | 6 |
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[4,1,5,3,2,3,6,0,0,3,0,6,6,2,3,0],[1,2,5,1,1,0,2,1,2,2,1,4,2,2,0,5],[6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[6,0,6,3,5,4,3,3,5,4,5,2,5,5,4,6] >;
C3×C23⋊C4 in GAP, Magma, Sage, TeX
C_3\times C_2^3\rtimes C_4
% in TeX
G:=Group("C3xC2^3:C4");
// GroupNames label
G:=SmallGroup(96,49);
// by ID
G=gap.SmallGroup(96,49);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-2,-2,144,169,1443,1090]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations
Export